Regular price: $6.95

Free with 30-day trial
Membership details Membership details
  • A 30-day trial plus your first audiobook, free
  • 1 credit/month after trial – good for any book, any price
  • Easy exchanges – swap any book you don’t love
  • Keep your audiobooks, even if you cancel
  • After your trial, Audible is just $14.95/month
Select or Add a new payment method

Buy Now with 1 Credit

By confirming your purchase, you agree to Audible's Conditions of Use and Amazon's Privacy Notice. Taxes where applicable.

Buy Now for $6.95

Pay using card ending in
By confirming your purchase, you agree to Audible's Conditions of Use and Amazon's Privacy Notice. Taxes where applicable.

Publisher's Summary

Reinforcement Learning with Python
Reinforcement learning is one of those data science fields which will most certainly shape the world. The changes are already visible since we have self-driving cars, robots and much more we used to see only in some futuristic movies. Reinforcement learning is a widely used machine learning technique, a computational approach when it comes to the different software agents which are trying to maximize the total amount of possible rewards they receive while interacting with some uncertain as well as very complex environments.
This book is divided into seven chapters in which you will get to reinforcement techniques and methodology better. The first chapters will introduce you to the main concept laying being reinforcement learning techniques. Further, you will see what the difference between reinforcement learning and other machine learning techniques is. The book also provides some of the basic solution methods when it comes to the Markov decision processes, dynamic programming, Monte Carlo methods and temporal difference learning.
What you will learn in this book:



Types of fundamental machine learning algorithms in comparison to reinforcement learning
Essentials of reinforcement learning process
Marko decision processes and basic parameters
How to integrate reinforcement learning algorithm using OpenAI Gym
How to integrate Monte Carlo methods for prediction
Monte Carlo tree search
Dynamic programming in Python for policy evaluation, policy iteration and value iteration
Temporal difference learning or TD
And much, much more....

Listen to this book now and learn more about reinforcement learning with Python!
©2017 Anthony Williams (P)2017 Anthony Williams
Show More Show Less

Customer Reviews

Most Helpful

By Eugene L. on 01-16-18

Code samples and audiobooks - worst idea ever

nobody wants to listen to def env: a = {[0 .. 1] ..... read aloud

Read More Hide me

By shifana on 11-23-17

My friend gave me this wonderful Audible book...

Well written and really informative book. This book is written with both the beginners and the expert programmers with various techniques explained in detail volume by volume...

Read More Hide me
See all Reviews
© Copyright 1997 - 2018 Audible, Inc